import xgboost as xgb from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集 iris = load_iris() X, y = iris.data, iris.target
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集 iris = datasets.load_iris() X, y = iris.data, iris.target
import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集 iris = load_iris() X, y = iris.data, iris.target
# 数据预处理 scaler = StandardScaler() X = scaler.fit_transform(X)
import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU, Add, GlobalAveragePooling2D, Dense from tensorflow.keras.models import Model
defresidual_block(x, filters, kernel_size=3, stride=1): shortcut = x # 第一个卷积层 x = Conv2D(filters, kernel_size, strides=stride, padding='same')(x) x = BatchNormalization()(x) x = ReLU()(x) # 第二个卷积层 x = Conv2D(filters, kernel_size, strides=1, padding='same')(x) x = BatchNormalization()(x) # 添加残差连接 if stride != 1or shortcut.shape[-1] != filters: shortcut = Conv2D(filters, kernel_size=1, strides=stride, padding='valid')(shortcut) shortcut = BatchNormalization()(shortcut) x = Add()([x, shortcut]) x = ReLU()(x) return x
defbuild_resnet(input_shape, num_classes, num_blocks_list): input_layer = Input(shape=input_shape) x = Conv2D(64, 7, strides=2, padding='same')(input_layer) x = BatchNormalization()(x) x = ReLU()(x) x = tf.keras.layers.MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
for num_blocks in num_blocks_list: for _ inrange(num_blocks): x = residual_block(x, 64) x = GlobalAveragePooling2D()(x) x = Dense(num_classes, activation='softmax')(x) model = Model(inputs=input_layer, outputs=x) return model
from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集 iris = load_iris() X, y = iris.data, iris.target