0%

状压DP

状压动态规划(Bitmask Dynamic Programming,状压DP)是一种优化技巧,通常用于解决组合优化问题,特别是集合的子集问题。以下是一个使用状压DP解决集合的最短路径问题的Java代码示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
public class BitmaskDP {

public static int shortestPath(int n, int[][] dist) {
int totalStates = 1 << n; // Total possible subsets

int[][] dp = new int[n][totalStates];
for (int[] row : dp) {
Arrays.fill(row, Integer.MAX_VALUE);
}
dp[0][1] = 0; // Starting state: only the first city visited

for (int mask = 1; mask < totalStates; mask++) {
for (int u = 0; u < n; u++) {
if ((mask & (1 << u)) != 0) { // Check if u is in the current subset
for (int v = 0; v < n; v++) {
if (v != u && (mask & (1 << v)) != 0) { // Check if v is in the current subset and not equal to u
dp[u][mask] = Math.min(dp[u][mask], dp[v][mask ^ (1 << u)] + dist[v][u]);
}
}
}
}
}

int minPath = Integer.MAX_VALUE;
for (int u = 1; u < n; u++) {
minPath = Math.min(minPath, dp[u][totalStates - 1] + dist[u][0]);
}

return minPath;
}

public static void main(String[] args) {
int n = 4; // Number of cities
int[][] dist = {
{0, 10, 15, 20},
{10, 0, 35, 25},
{15, 35, 0, 30},
{20, 25, 30, 0}
};

int shortest = shortestPath(n, dist);
System.out.println("Shortest Path: " + shortest);
}
}

在这个示例中,shortestPath 方法使用状压DP解决了集合的最短路径问题。算法通过构建一个二维数组 dp 来保存状态转移,从而计算最短路径。

请注意,状压DP通常用于解决集合的子集问题,例如在TSP(Traveling Salesman Problem)中寻找最短路径。实际应用中,可能需要根据问题的需求进行适当的修改。