from sklearn.datasets import load_iris from sklearn.model_selection import LeaveOneOut from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score
# 加载鸢尾花数据集 iris = load_iris() X, y = iris.data, iris.target
# 创建逻辑回归模型 model = LogisticRegression()
# 初始化计数器 correct_predictions = 0
# 使用留一验证进行模型评估 loo = LeaveOneOut() for train_index, test_index in loo.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] model.fit(X_train, y_train) y_pred = model.predict(X_test) if y_pred == y_test: correct_predictions += 1