0%

DP 树的最小支配集,最小点覆盖与最大独立集

在图论中,树的最小支配集(Minimum Dominating Set)、最小点覆盖(Minimum Vertex Cover)和最大独立集(Maximum Independent Set)是经典的问题,可以使用动态规划来解决。下面是使用动态规划求解这些问题的Java代码示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import java.util.ArrayList;
import java.util.List;

class TreeNode {
int val;
List<TreeNode> children;

TreeNode(int val) {
this.val = val;
this.children = new ArrayList<>();
}
}

public class TreeProblems {

// 最小支配集问题
public static int minDominatingSet(TreeNode root) {
if (root == null) {
return 0;
}

int take = 1;
int notTake = 0;

for (TreeNode child : root.children) {
take += minDominatingSet(child);
for (TreeNode grandchild : child.children) {
notTake += minDominatingSet(grandchild);
}
}

return Math.min(take, notTake);
}

// 最小点覆盖问题
public static int minVertexCover(TreeNode root) {
if (root == null) {
return 0;
}

int take = 1;
int notTake = 0;

for (TreeNode child : root.children) {
take += minVertexCover(child);
notTake += child.children.size() > 0 ? minVertexCover(child.children.get(0)) : 0;
}

return Math.min(take, notTake);
}

// 最大独立集问题
public static int maxIndependentSet(TreeNode root) {
if (root == null) {
return 0;
}

int take = 1;
int notTake = 0;

for (TreeNode child : root.children) {
take += maxIndependentSet(child);
for (TreeNode grandchild : child.children) {
notTake += maxIndependentSet(grandchild);
}
}

return Math.max(take, notTake);
}

public static void main(String[] args) {
TreeNode root = new TreeNode(1);
TreeNode child1 = new TreeNode(2);
TreeNode child2 = new TreeNode(3);
TreeNode child3 = new TreeNode(4);

root.children.add(child1);
root.children.add(child2);
root.children.add(child3);

TreeNode grandchild1 = new TreeNode(5);
TreeNode grandchild2 = new TreeNode(6);

child1.children.add(grandchild1);
child2.children.add(grandchild2);

System.out.println("Minimum Dominating Set: " + minDominatingSet(root));
System.out.println("Minimum Vertex Cover: " + minVertexCover(root));
System.out.println("Maximum Independent Set: " + maxIndependentSet(root));
}
}

在这个示例中,我们定义了一个简单的树结构(TreeNode),并使用动态规划方法解决了最小支配集、最小点覆盖和最大独立集问题。每个问题都是通过递归计算来实现的。请注意,实际应用中的树结构可能会更加复杂,代码也会相应地调整。